Safe Motion Planning for Quadruped Robots using Density Functions
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Abstract— This report presents a motion planning algorithm
for quadruped robots based on density functions. We decom-
pose the planning problem into a high-level global planner and
a model predictive controller (MPC). Density functions are a
physically intuitive way to represent the environment. It is a
scalar positive valued function that takes zero values in the
obstacle set and infinite values in the target set. The center
of mass of the robot is modeled as an integrator system, and
the high-level plan is obtained as a gradient of the density
function. Further, the proposed planner can be implemented
as a feedback controller for the system. We then use the
MPC to follow the desired reference plan. Finally, a low-
level PID controller is used to obtain the joint torques. The
overall framework is implemented in simulation using ROS
and Gazebo. Our project page with implementation is available
at https://github.com/AndrewZheng-1011/legged_
planner

I. INTRODUCTION

Quadruped research has seen great success in the research
community over the past few years [1]. This is highlighted
through the DARPA Subterranean Challenge, where the top
two teams had either ANYmal from ANYbotics or Spot from
Boston Dynamics as a core component to their underground
exploration challenge [2], [3]. This can be attributed to ad-
vancements in both the algorithmic component, researchers
finding clever ways to deal with the hybrid dynamics, and the
hardware component, hardware having real-time capabilities
for nonlinear optimization problems.

In general, the quadruped locomotion problem can be
decomposed into a high-level global planner which provides
collision-free paths for the floating base and a low-level
controller for designing the required joint torques for each
leg to track the desired reference trajectory (see Figure 1). In
this report, we use density functions to design a high-level
plan for quadruped locomotion. The density function has a
physical interpretation, where the measure associated with
the density is a measure of occupancy of the system trajec-
tories for any set in state space. We exploit this occupancy-
based physical interpretation of the density function in the
construction for designing a collision-free plan. This plan
is obtained as the gradient of the density function and can
be implemented as a feedback controller. We then use a
nonlinear model predictive controller (NMPC) as a low-level
planner and obtain the desired reference foot forces for each
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Hierarchical planning and control structure for quadruped locomo-

foot required to track the high-level reference plan. Finally,
the desired foot forces are converted to joint torques using a
low-level PID controller.

The rest of the report is organized as follows. In Section
I, we introduce the preliminaries of quadruped dynamics
and density functions. In Section III, we provide simulation
results of the proposed density-based planner fpr a single
integrator system. In Section IV, we integrate the density-
based planner with the quadruped locomotion framework
using ROS and Gazebo. Finally, in Section VI, we conclude
this work with some limitations and future directions.

II. PRELIMINARIES
A. Rigid Body Dynamics

Quadruped locomotion can be described as a hybrid sys-
tem switching between swing and stance phase dynamics.
The switching logic is determined by a contact detection
algorithm. This system is under-actuated since there is no
direct actuation along the direction of motion. The robot must
exert ground reaction forces (GRFs) at each foot in contact
to propel its base forward to follow a reference trajectory.
Most state-of-the-art approaches use a reduced-order model
to represent quadruped dynamics. In this report, we use the
centroidal model which describes the evolution of the floating
base as a result of the net change of momentum of the full-
order system. The state and input vectors are defined by

[hcom qp Qj}—r € R12+n

T =
w = [f., vj] € Rt

where Rcom = [Pyin Rang] € RC is the centroidal momen-
tum and Ay, hang are the linear and angular momentum
respectively. The states g, = [p 8] € RS represents the
position and orientation of the floating base. The states
g; € R" represent the joint angles for each foot. Each leg ¢
in contact generates a ground reaction force f., € R3, and
v; is the angular velocity of each joint. Here, n. and n, are
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the number of contact points and the number of leg joints
respectively. The centroidal dynamics are given by

St For +mg

hcom = n
Zizcl Tcom X fr, + Te;

where m is the mass of the robot, g = [0 0 g]' denotes
the gravity vector. f., and 7., represent the contact forces
and torques applied by the environment on the floating base.
Further, we use the centroidal momentum matrix A(q) =
[Ay(q) A;(q)] € RO*(6+7) a5 introduced in [4] such that

heon = [An(a) - Aja)] |21

Finally, the dynamics of floating base g; is augmented with
the kinematics of the joints g; to obtain

(1a)
(1b)

qb = Ab_l <hcom - quj>
q; = v;

Note that the dynamics presented in (1) is nonlinear and
under-determined (since A(q) is a fat matrix). The system
has multiple feasible solutions for a given input u.

B. Nonlinear MPC

In this report, we adopt the nonlinear MPC proposed in
[5]. In general, the nonlinear MPC problem with a horizon
N can be formulated as

N—-1
min D Allerir = @ resllQn + [ullx, }
i=0
subject to
Dynamics (1)
Friction constraints

Actuator limits

where x; and uy are the state and control input respec-
tively at time step k, Qi and Kj are diagonal positive
definite weight matrices. Here, u; are the individual foot
forces required to track the global plan. The optimization is
solved in closed-loop in a receding horizon fashion using the
Sequential Linear Quadratic (SLQ) technique [6].

C. Low-level Controller

The low-level controller is designed to track the optimal
reference plans. This is formulated through a hierarchical
quadratic program (QP) which optimizes the actuator torques
under a higher fidelity model, friction, and actuator con-
straints. To map the MPC output to the QP, extra information
is extrapolated such as the swing feet trajectories, which can
be obtained through a simple kinematic relation of task to
joint space acceleration

Je.G; + Je,d; = 7o, 2)

where J, is the swing leg jacobian and 7 is the end-effector
acceleration. The optimized trajectory from the QP is tracked
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Fig. 2. Motion Planning framework using density where (a) defines the

environment, (b) shows the density function, and (c) shows occupancy
measure, which physically denotes the duration of system trajectories
occupying the set.

using a drive controller where the torque actuated (7,) is
defined by the following

where T; is the expected joint torque, ¢* and g* are the
optimized joint reference states, More details on the QP
formulation can be referenced to [5].

D. Construction of Density Functions

As introduced in [7], the navigation measure has a physical
interpretation of occupancy, where the measure of any set is
equal to the occupancy of the system trajectories in the set
as shown in Figure 2. Hence, zero occupancy in a set implies
system trajectories not occupying that particular set. So by
ensuring that the navigation measure is zero on the obstacle
set and maximum on the target set, it is possible to induce
dynamics whereby the system trajectories will reach the
desired target set while avoiding the obstacle set. We exploit
this occupancy-based interpretation in the construction of
analytical density functions.

Although density functions can represent any arbitrarily
shaped obstacles, we restrict the focus of this report to
circular obstacles. For k obstacles, we start with constructing
the unsafe set X, , where the boundary of the unsafe set is
described in terms of the zero-level set of a function. For a
circular obstacle, the unsafe set X,,, is defined as follows

Xy, ={xeX:|x—cg| <ri}

Next, for each obstacle, we define a transition region X,
that encloses the unsafe set X, such that the set {x € X :
sk(x) = 0} defines the boundary of this transition region. A
circular transition region can be defined by the following set

X, ={xeX:|x—ci| <si}\Xu



The physical significance of this transition region is to act as
a sensing region inside which the robot trajectories start to
react to the unsafe set. Now we can define a positive scalar-
valued function p(x), which takes the following form

I )
V()"

Here, the function V'(x) is the distance function that mea-
sures the distance from state x to the target set, i.e. the
origin, and « is a positive scalar. In this paper, we assume
V(x) to be of the form V(x) = ||x||%. The inverse bump
function ®j(x) is a smooth C* function that captures the
geometry of the unsafe set X,, and can be constructed
using the following sequence of functions. We first define
an elementary C*° function f as follows [8]

p(x) S

exp(=), 7>0
0, T<0

f(r) =

where T € R. Next, we construct a smooth version of a step
function f from f as follows

_ f(r
Fr) = st —
fr)+f(1—7)
To incorporate the geometry of the environment, we define
— 2 2
a change of variables such that ¢y (x) = f %)
k k

The resulting function ®(x) take the following form,

0, x € Xy,
D (x) =1 dr(x), xeXs,
1, otherwise

Note that o and s are scalar tuning parameters that can
be used to obtain trajectories with the desired behavior.

III. PLANNING FOR A HOLONOMIC SINGLE INTEGRATOR

Given the construction of p(x) in (4), we design a con-
troller for navigation as the positive gradient of the density
function p(x), i.e.,

x = Vp(x) 5)

The controller defined in equation (5) will converge to the
goal if the density function p(x) satisfies almost everywhere
navigation properties [9]. In this report, we show that the
density function proposed in equation (4) can be used for
obstacle avoidance while also satisfying the convergence
properties. We demonstrate this using a simple example as
shown in Figure3. The environment is defined with the target
set at X7 = (4, —3) and a circular unsafe set X,, and circular
sensing region X.

Figure 3a illustrates the convergence properties of the
proposed controller. We can see that trajectories starting
from almost all initial conditions starting at the boundary
of the environment converge to the target while avoiding
the obstacle. However, trajectories starting on the black line,
which is the polar opposite of the target set, converge to
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Fig. 3.

(a) Trajectories converge to the target set (green) while avoiding
the unsafe set (gray) with a.e. convergence, (b) Initial conditions along the
zero-measure set (black) converge to a saddle point (purple), (c) Trajectories
starting at A (s(x) > 0) and B (in X, ) converge to the target set, (d)
Trajectories starting from A and B follow the same path near the boundary
of s(x).

a saddle point (shown in Figure 3b). This set of initial
conditions constitutes a measure zero set mX = 0.

In Figure 3c, we look at the characteristics of initial
conditions starting outside the sensing region (trajectory A),
and within the sensing region (trajectory B). The gradients
of the density function p(x) are such that trajectory A starts
to react as it enters the sensing region. In contrast, trajectory
B is repelled outward towards the boundary of the sensing
region before converging to the target set (see Figure 3d).

TABLE I
DENSITY PARAMETERS

Parameter Value
o 0.2
r 1
s 2

Control Gain 25

IV. PLANNING FOR QUADRUPED LOCOMOTION

This section discusses the planning architecture to map
our feedback density planner for holonomic systems to
quadruped locomotion. We show planning architecture using
the density planner and show convergence and obstacle
avoidance properties of the controller for a quadruped robot
in simulation.
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Fig. 4. Quadruped robot executing the proposed global plan. (a) Environment with single obstacle and (b) the corresponding heightmap representation.

(c) Environment with two obstacles

A. Global Planner Architecture

The main contribution of this work is the integration of
a generic motion planning architecture as seen in Figure
1 into the OCS2 framework [10]. The goal of the motion
planning architecture is to create an interface that allows
for any planner (e.g. A*, RRT, reactive planners, trajectory
optimizer, etc.) to plan for a simplified robot model and
convert it into a trajectory that is suitable to for the quadruped
motion planning problem.

The architecture relies mainly on the body planner to
handle the logic of receiving plans, mapping the plan to a
centroidal model, and sending the lifted plan to a trajectory
manager to handle trajectories as a reference to the finite state
machine (FSM) and model predictive controller (MPC).

Additionally, due to the architecture of the body planner,
where the body planner communicates to the planning al-
gorithm using a ROS interface, it is simple to interchange
different algorithms and transform the plan to locomotion
for quadrupeds. In this work, we use the density navigation
planner, which gives us a feedback planner for almost every-
where convergence while remaining inside the safe region.
Details of the implementation in available on GitHub'.

B. Simulation Results

Simulation results are shown using Gazebo with RVIZ as
the visual interface, as shown in Figure 4. In the following
experiment, we define a target set X1 = (10,0). In Figure

'Legged Planner Github Link

Figure 4a, we set up an environment with a cylindrical
obstacle X, centered at (5,0) with a radius of » = 1,
while in Figure 4c, we use two cylindrical obstacles centered
at (3,0.1) and (7,-1) respectively. Using these parameters,
a density function is constructed. The reference trajectory
is obtained as a feedback control using (5). By forward
integrating the feedback controller for a fixed horizon, our
feedback controller is fed into the NMPC as a reference
trajectory. Note that for an increase in performance, we use
a first-order filter and a moving average filter to smoothen
the trajectories generated by the density planner.

V. LIMITATIONS

Some limitations of the current framework are listed below

e The density-based planner works only for binary en-
vironments. There is no distinction for the degree of
traversability and hence it cannot be easily extended to
off-road navigation.

e This formulation only works for holonomic systems.
Although, there are several ways to extend for non-
holonomic cases.

e The formulation relies on global information for the
environment and hence cannot incorporate local sensing
information to form density functions online.

e The quality of trajectories obtained from the global
planner can be improved by passing it through a tra-
jectory optimizer.
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VI. CONCLUSIONS

In this work, we develop a motion planning architec-
ture for quadruped locomotion. We use density functions
to design a safe reference trajectory for the robot. The
trajectories are obtained as a positive gradient of this den-
sity function and can be implemented in closed loop. The
proposed algorithm is integrated with a nonlinear MPC and
low-level controller from the OCS2 framework. Simulation
results show that the robot is able to track safe reference
trajectories provided by the density-based motion planning
framework. Future works will integrate a trajectory optimizer
and extend this framework to non-holonomic systems and off
road navigation.
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